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Women are credited less in science than men

Matthew B. Ross1, Britta M. Glennon2,3, Raviv Murciano-Goroff4, Enrico G. Berkes5, 
Bruce A. Weinberg3,5 & Julia I. Lane6 ✉

There is a well-documented gap between the observed number of works produced by 
women and by men in science, with clear consequences for the retention and 
promotion of women1. The gap might be a result of productivity differences2–5, or it 
might be owing to women’s contributions not being acknowledged6,7. Here we find 
that at least part of this gap is the result of unacknowledged contributions: women in 
research teams are significantly less likely than men to be credited with authorship. 
The findings are consistent across three very different sources of data. Analysis of the 
first source—large-scale administrative data on research teams, team scientific output 
and attribution of credit—show that women are significantly less likely to be named on 
a given article or patent produced by their team relative to their male peers. The 
gender gap in attribution is present across most scientific fields and almost all career 
stages. The second source—an extensive survey of authors—similarly shows that 
women’s scientific contributions are systematically less likely to be recognized. The 
third source—qualitative responses—suggests that the reason that women are less 
likely to be credited is because their work is often not known, is not appreciated or is 
ignored. At least some of the observed gender gap in scientific output may be owing 
not to differences in scientific contribution, but rather to differences in attribution.

Gender differences in observed scientific output are well-documented: 
women both publish and patent less than men1. The causes of these 
differences are not well understood. Analysis using individual data 
has suggested that women are less productive because they work in 
less welcoming work environments2, have greater family responsibili-
ties3, have different positions in the laboratory4 or differ in the type of 
supervision they are provided5. Recent work has suggested that women 
are not less productive, but rather that their work is undervalued8. The 
analysis in this Article uses new data on research teams to suggest that 
women are accorded less credit than men: they are systematically less 
likely to be named as authors on articles and patents.

The possibility that women receive less recognition for their scien-
tific contributions is not hypothetical: the canonical example is that of 
Rosalind Franklin. Franklin’s pivotal contribution to the discovery of the 
structure of DNA initially went unrecognized6, and it was not until long 
after she died that the scientific community became aware that she was 
wrongfully denied authorship on the original Crick and Watson paper. 
Indeed, her contribution was apparently only recognized because 
Watson’s account of the discovery was so incorrect9 and stimulated a 
reconstruction of events by Franklin’s friends10. More recently, Walter 
Isaacson recounts Jennifer Doudna’s concern that she and Emmanuelle 
Charpentier were being relegated to “minor players” in the history and 
commercial use of CRISPR-Cas97. The open questions, of course, are 
how many women’s contributions have been missed in similar but less 
high-profile circumstances, and how many women have been discour-
aged from pursuing careers in science as a result11.

Finding ‘what isn’t there’ from ‘what is there’ is a fundamental prob-
lem in statistics, and has been used to address such vastly different 

questions as calculating the return on investment of mutual funds (after 
accounting for funds that no longer exist) or the optimal placement of 
armour on aeroplanes in the Second World War12 (after accounting for 
those that did not return). The problem of selecting on the dependent 
variable is also prevalent in the social sciences; for example, in only 
observing the labour supply of people who participate in the labour 
market13 or studying the drivers of economic development by selecting 
a few successful industrializing countries14.

The first steps in identifying the missing data in these two examples 
are to describe the population from which the sample of observations 
is drawn and then to document the degree of missingness. Subsequent 
steps then characterize the sources of the missingness. The large-scale 
bibliometrics databases used to study scientific output consist only of 
named authors or inventors (not unnamed contributors), and cannot 
be used to find who is not named; carefully curated case studies are too 
small to generalize15. The unique data on research teams used in this 
paper are, by contrast, fit for the purpose: they consist of information 
on 9,778 teams over a four-year period: the 128,859 individuals working 
in those teams, matched to 39,426 journal articles and 7,675 patents 
produced by those teams (Methods, ‘Construction of administrative 
data’). Because the data include information about the positions held 
by each individual on each team as well as their gender, it is possible to 
calculate for each individual whether they did or did not receive credit 
on a given article and to calculate differences by gender.

The evidence generated from the analysis described in this paper 
suggests that Rosalind Franklin is far from unique in not receiving 
credit for her work. If credit is defined simply as ever being named 
an author, women account for only 34.85% of the authors on a 
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team, even though they make up just under half of the workforce 
(48.25%; Extended Data Table 2). When credit is defined as the likeli-
hood of being listed as an author on a given document (relative to 
the mean) produced by a research team, there is a 13.24% gap for 
articles and a 58.40% gap for patents in the likelihood that women 
are named on any given article or patent produced by their team 
(Extended Data Table 4, column 5). The chances of women receiv-
ing credit on an article decrease by 4.78% relative to the baseline 
rate of 3.18% (P < 0.0001; two-sided t-test; test value = −3.8, effect 
size = −0.0015 percentage points (pp)) for each 1 log point increase 
in citations (Extended Data Table 7).

The results are confirmed by appealing to a completely different 
source of quantitative data—a survey of 2,660 scientists regarding 
the allocation of credit (Methods, ‘Survey design and collection’ and 
Supplementary Information, part 3). Exclusion from authorship is 
common and differs significantly by gender: 42.95% of women and 
37.81% of men reported that they had been excluded from authorship 
(P = 0.0151; two-sided t-test; test value = −2.4327, effect size = −0.0514), 
and significantly more women (48.97%) than men (39.13%) report that 
others underestimated their contribution (P = 0.0036; two-sided t-test; 
test value = −2.9218, effect size = −0.0984).

Qualitative analysis—open-ended narrative statements by survey 
respondents as well as personal interviews with consenting authors 
(approach detailed in Methods, ‘Survey design and collection’ and 
‘Qualitative evidence’ and Supplementary Information, part 3)—was 
also consistent. Authors noted that the rules of credit allocation were 
frequently unclear and often determined by senior investigators.  
A complex mix of factors, particularly field, rank, culture and gender, 
was identified. However, an overarching theme was that the rules gov-
erning scientific contributions were often not codified, not understood 
by all members of the research team, or simply ignored. The necessary 
level of work required for authorship is often not clear to everyone par-
ticipating on research teams, and the level of work deemed necessary to 
receive attribution can vary on the basis of the idiosyncratic personal 
preferences and a team member’s relationship with the principal inves-
tigator (PI). Thus, women and other historically marginalized groups 
must often put in significantly more effort in order for their scientific 
contributions to be recognized.

Our analyses on administrative, survey, and qualitative data sug-
gest that even 70 years later, the same factors that led to the denial of 
Rosalind Franklin’s authorship of the pivotal work on the structure of 
DNA are still at work. At least some of the observed gender gap in scien-
tific output may not be owing to differences in scientific contribution, 
but to differences in attribution within research teams.

Attribution and administrative data
Unpacking the structure of research teams to understand whose 
work is not recognized requires identifying each individual on each 
research team, characterizing their position by their job title, and then 
determining whether or not they are named on the articles and pat-
ents produced by the research team. Administrative data can be used 
to provide highly granular information about who works on which 
research project because records in human resources both document 
every payment that is made during each pay period from each grant 
and provide information on each employee’s job title. Currently, 118 
campuses from 36 participating universities provide their deidentified 
data to the Institute for Research on Innovation and Science at the Uni-
versity of Michigan, which processes and standardizes the information 
as analytical files16. The earliest year for which data were provided by a 
participating institution was 2000 and the latest was 2019, and the data 
include information on payments of wages from individual grants to all 
people employed by each grant, including information on the job title 
for which a person is paid on a particular grant (Methods, ‘Construction 
of administrative data’).

Teams were constructed around a central PI, their associated grants, 
and individuals employed on those grants from 2013–2016. The scien-
tific field of each team is identified by using the title of all associated 
grants and comparing the grants with a pool of text that describes each 
scientific field using a ‘wiki-labelling’ approach17–19. Scientific docu-
ments were linked to a team if the article or patent acknowledged one 
of the team’s grants and/or any member of the team was listed as an 
author on that article or patent (further details in Methods, ‘Construc-
tion of administrative data’).

Attribution can be measured in many ways using these data. Three 
measures are constructed for the purposes of this paper: (1) the rate at 
which individuals are ever named as an author on any scientific docu-
ment: the ‘ever-author’ rate, (2) the rate at which individuals are named 
as an author on a given scientific document produced by their team—the 
‘attribution’ rate, and (3) the rate at which individuals are named to 
any given high-impact document—the ‘high-impact attribution’ rate 
(Methods, ‘Analytical sample’).

The first and simplest measure is the ever-author rate, which char-
acterizes an individual as an author if he or she was ever named as an 
author or an inventor during the analysis period. As shown in Table 1, 
16.97% of individuals are classified as authors using this measure, but 
the probability that men are ever named is 21.17% whereas the prob-
ability for women is 12.15%. Table 1 also shows that there are two rea-
sons for this gap: the junior positions of women in research teams, and 
under-representation in attribution given their position. First, women 
are less likely to be in the senior positions that are associated with ever 
being named an author, 'ever authorship'. The highest ever authorship 
rate (45.70%) is for faculty members, yet only 11.30% of women (versus 
19.72% of men) in the sample are faculty members. Conversely, the 
‘ever authorship’ rate for research staff is 8.63%, yet 47.81% of women 
are research staff, compared with 28.73% of men. Second, holding  
the distribution of positions constant (at the grand means), women are 
4.82% less likely to ever be named as authors. In the case of graduate 
students, for example, 14.97% of women are ever named as an author 
on a document compared with 21.37% of men. The consequences of 
such disparities on the retention of senior women in and the attrac-
tion of young women to scientific careers are unlikely to be positive.

Although illustrative, the ever-author rate does not fully capture dif-
ferential attribution. In our motivating example, Franklin could have 
been named as an author on some articles or patents emanating from 
the research team other than the DNA paper with Crick and Watson. 
The second authorship measure is the attribution rate, which repre-
sents the likelihood that a woman receives credit on a given scientific 
document produced by her research team.

Table 1 | Gender differences in position and ‘ever authorship’

Job title Frequency of job title in the 
full sample

Likelihood of ever 
receiving attribution

Total Women Men Total Women Men

Faculty 14.85% 11.30% 19.72% 45.70% 41.25% 48.86%

Postdoc 8.63% 6.00% 9.08% 25.17% 22.35% 27.31%

Graduate student 24.15% 17.42% 25.06% 18.69% 14.97% 21.37%

Research staff 35.41% 47.81% 28.73% 8.63% 6.59% 11.01%

Undergraduate 16.96% 17.48% 17.42% 2.61% 2.22% 3.10%

Total/average 100% 100% 100% 16.97% 12.15% 21.17%

This table provides descriptive statistics that show the percentage of employees who 
worked in university research teams between 2013 and 2016 (left three columns), as well as 
those who appeared on at least one scientific document published from 2014 to 2016 as an 
author or inventor (right three columns). The percentages are computed over the 128,859 
unique employees in the dataset. The totals include men, women and those whose gender 
was not imputed. Further details are provided in Extended Data Table 1 and Methods,  
‘Construction of administrative data’.
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The empirical implementation of what is a relatively straightfor-
ward conceptual framework is more difficult, but the data are rich 
enough to allow such calculations (see Methods, ‘Analytical sample’ 
for details). The denominator—the set of ‘potential authorships’—was 
created by associating all members of each team who were employed 
one year before the publication or application date to all associated 
articles or patents emanating from that team during the analysis 
period. Since some individuals, such as research staff, are on multiple 
teams, they are proportionately allocated across teams using a set of 
analytical weights (Methods, ‘Analytical sample’). The numerator—
attribution—was defined as ‘actual authorships’ on those articles and 
patents. Thus, the attribution rate is the ratio of actual authorships to 
potential authorships. The overall attribution rate for any team member 
on either a patent or article is 3.2%. On average across all job titles and 
fields, women have a 2.12% probability of being named on any scien-
tific document, whereas men are twice as likely to be named (4.23%) 
(P = 0.0000; two-sided t-test; test value = 19.5823, effect size = 2.11%; 
Extended Data Tables 2 and 3).

The data are rich enough to examine whether the observed gender 
gap simply reflects gender differences in organizational position rather 
than attribution. We find that women in each position are systemati-
cally less likely than men to be named an author on any given article 
or patent for any given position that they occupy in the organization.

Figure 1 (and Supplementary Fig. 5) makes use of information in the 
data about each individual’s position in the organization—faculty, post-
doc, graduate student, undergraduate student or research staff—as well 
as the research team’s field. Women occupy more junior career posi-
tions than men. The proportion of women in each position declines as 
the seniority of the position increases (Fig. 1, left). At the high extreme, 

34.82% of faculty members are women; at the lower extreme, 60.81% 
of research staff are women.

However, Fig. 1 (left) also shows that the share of actual authorships 
for women is lower than what would be expected given their share of 
potential authorships in each career position. The difference between 
the share of potential authorships and actual authorships for women 
ranges from 15.72 pp for research staff (P = 0.0000; two-sided t-test; 
test value = −15.81; effect size = 15.72 pp) to 7.09 pp for faculty members 
(P = 0.0000; two-sided t-test; test value = −13.34; effect size = 7.09 pp) 
to 5.51 pp for postdocs (P = 0.0000; two-sided t-test; test value = −5.08; 
effect size = 5.51 pp; Extended Data Table 3). These gaps are clearly 
apparent as every marker Fig. 1 (left) is below the diagonal (also see 
Extended Data Table 3 and Supplementary Fig. 5).

A similar pattern is apparent when authorship is analysed by field 
(Fig. 1, right). For example, in biology, the share of actual authorships 
who are women is 15.02 pp lower than the share of women among poten-
tial authors (P = 0.0000; two-sided t-test; test value = −3,024; effect size: 
15.02 pp; Extended Data Table 3). In physical science, the corresponding 
difference is 14.12 pp (P = 0.0000; two-sided t-test; test value = −25.44; 
effect size = 14.12 pp; Extended Data Table 3).  Note that the figure does 
not control for job title in disaggregating attribution by field, so fields 
with disproportionately more women and lower attribution rates may 
reflect the fact that there are more research staff.

It is possible, of course, that the gender differences arise from com-
positional differences between women and men in the teams on which 
they work, fields, job titles or time allocated to particular projects. In 
particular, women might sort into teams with different propensities 
to publish or onto projects with different research questions. Figure 2 
(and SI Figure S6) plots the estimated attribution rate for men and 
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Fig. 1 | Women are less likely to be named authors on any given document in 
all fields and at all career stages. Graphs plot the probability that a potential 
author on a scientific document (article or patent) is a woman against the 
probability that an actual author is a woman. A potential author is defined as an 
employee in a laboratory between 2013 and 2016 from which an article or 
patent was published between 2014 and 2016. There are 17,929,271 potential 
article authorships and 3,203,831 potential patent inventorships in our sample. 

The markers in each panel are sized by the total number of actual authorships in 
the category. The diagonal represents parity in the gender composition of 
potential and actual authorships. Individual data on potential and actual 
authorships are shown in Supplementary Fig.  5. Left, disparity across job titles. 
Right, disparity across research fields. Observations are weighted by the 
inverse of the number of teams per employee times the inverse of the number 
of potential articles or patents per employee.
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women on articles (left) and patents (right) as well as the differences 
(indicated by Δ). Using a series of regression models that control for 
these types of potential compositional differences, we estimated the 
attribution rate for men and women on articles and patents as well 
as the differences (indicated by Δ) (Fig. 2, Extended Data Table 4 and 
Supplementary Fig. 6). In these models, an indicator for being named is 
regressed on an indicator for gender as well as an increasingly expansive 
set of control variables (Extended Data Table 4). Column (1) includes 
no controls; column (2) adds publication date (calendar year × month), 
days worked on the team, and an indicator for the individual being a 
PI; column (3) adds job title indicators; column (4) adds field controls; 
and column (5) adds indicator variables for each team. Including these 
additional controls reduces, but does not eliminate, the disparity for 
women. Even in the fully specified model, which adds controls for each 
research team, women are 13.24% (P < 0.0001; two-sided t-test; test 
value = −6.3788; effect size = −0.4210 pp) less likely to be named on 
articles and 58.40% (P<0.0001; two-sided t-test; test value = −10.7746; 
effect size = −0.7652 pp) less likely to be named on patents.

The estimated regression-adjusted gender differences in attribu-
tion rates across job titles and fields, controlling for a wide variety 
of observable factors, are reported in Extended Data Tables 5 and 6. 
Notably, after including controls, the gender gap is significant for all 

job titles except undergraduates. The gender gap is similarly significant 
for 9 out of 13 fields for publications and 5 out of 13 fields for patents, 
after including controls.

The third measure reflects the fact that not all scientific documents 
are created equal. The omission of Franklin from the Crick and Wat-
son paper was particularly egregious because of its high potential 
and ultimate scientific impact. The empirical implementation of the 
third measure is to attach forward citations to the articles and pat-
ents. Figure 3 shows that, when controlling for field, career position 
and team size, there is no significant difference between the likeli-
hood of a woman being named relative to a man on an article with 
zero citations (P = 0.1725; two-sided t-test; test value = 1.3642; effect 
size = 0.1392 pp). However, for more highly cited articles women are 
less likely than men to be named. For example, on an article with 25 
citations women are 19.9739% less likely to be named than men relative 
to the baseline (P < 0.0001; two-sided t-test; test value = −7.4982; effect 
size = 0.6352 pp; Extended Data Table 7).

Attribution and survey data
Qualitative evidence about the reasons behind the lack of attribution 
can be obtained from surveys. Despite the well-known issues with 
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Fig. 2 | Women are still less likely to be named even when controls are 
included. Graphs show the probability that an individual in a team is an author 
on a given article (left) or patent (right) published by that team. Left, the 
likelihood of attribution on an article is estimated from 17,929,271 potential 
authorship observations. Right, the likelihood of attribution on a patent 
is estimated from 3,203,831 inventorship observations. The data associated 
with each bar are generated by predicting the dependent variable from ordinary 
least squares regressions of the likelihood of being named on gender and the 
indicated controls (reported in Extended Data Table 4). For the purpose of 
plotting probabilities and gender differences holding all else fixed (Δ), we hold 
all of the controls at their respective means. Because men have higher values 
than women on average on the controlled factors that increase the probability 

of attribution, the predicted probabilities for men decline and those for women 
increase as more controls are included. Controls, from left to right: (1) none;  
(2) whether a potential author is the PI of the team, the number of days worked 
on the team and publication date (calendar year × month); (3) job title of the 
potential author/inventor; (4) research field of the team; (5) individual indicator 
variables for each team (these team indicators subsume the fields indicator). 
The observations are weighted by the inverse of the number of teams per 
employee times the inverse of the number of potential articles or patents per 
employee.  Individual data on the probability of women or men being named on 
articles or patents are visualized in Supplementary Fig.  6. Error bars are  
centred on the mean and extend to the 95% confidence interval based on 
1.96 × s.e. Standard errors are clustered by team and employee.
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selection bias, self-reporting and low response rates, survey data can 
be useful for triangulating against administrative data20. We designed 
a survey of authors who appeared on at least one article in the Web 
of Science21 after 2014 and who had a published and available e-mail 
address. We asked three core sets of questions of each individual to 
shed light on the findings from our analysis of administrative data 
(the full survey is reproduced in Supplementary Information, part 3).

To get a sense of how often scientists were not appropriately credited, 
we asked whether respondents had ever been excluded from a paper 
to which they had contributed. Out of 2,660 responses, there is a clear 
gender difference, with 42.95% of women and 37.81% of men having been 
excluded as an author (P = 0.0151; two-sided t-test; test value = −2.4327; 
difference = −0.0514). This gap is qualitatively similar to the gaps esti-
mated using the administrative data, where men were almost twice as 
likely (21.17%) to be recognized as ever being an author or inventor as 
women (12.15%), and the attribution rate on potential authorships/
inventorships for men was 4.23%, compared with 2.12% for women.

We also asked why respondents thought they were not credited: 
Fig. 4 (and Supplementary Fig. 7) summarizes the results for the 871 
individuals who responded (483 men and 388 women). The most com-
mon reason was that scientific contributions were underestimated, 
and this was the case for far more women (48.97%) than men (39.13%) 
(P = 0.0036; two-sided t-test; test value = −2.9218; effect size = −0.0984). 
Although discrimination or bias was much less likely to be cited, 
women were twice as likely (15.46%) to cite this as a reason than men 
(7.67%) (P = 0.0003; two-sided t-test; test value = −3.6623; effect size =  
−0.0780). Men were more likely to say that their contributions did not 

warrant authorship (37.68% of men compared with 24.74% of women; 
P = 0.0000; two-sided t-test; test value = 4.1060; effect size = 0.1294). 
Differences in responsibilities (that is, a respondent indicated that they 
were not granted attribution for at least one of the following reasons: 
personal, non-research responsibilities and/or left the laboratory) 
appear to account for some of the attribution gap—17.53% of excluded 
women cited these reasons, compared with 12.63% of men (P = 0.0432; 
two-sided t-test; test value = −2.0244; effect size = −0.0490). Together, 
these estimates suggest that a large portion of the gender gap in attri-
bution is owing to either discrimination or how contributions are per-
ceived by collaborators, or both.

The same question—whether women with the same contribution as 
men are less likely to be credited—can be asked a different way: con-
ditional on being credited, did women contribute more than men? 
Accordingly, we asked authors to indicate what they did to earn author-
ship on one of their most recent publications using the standardized 
contributions identified by Project Credit22. The results, reported in 
Fig. 5 and in Supplementary Fig. 7, are consistent: on average, women 
have to do more than men to be included as an author (2,297 individu-
als responded: 1,371 men and 926 women). A simple unweighted count 
of total contributions reported shows that women report a total 6.34 
contributions on average compared with 6.11 for men (P = 0.0907; 
two-sided t-test; test value = −1.6925; effect size = −0.2376). Women 
report making significantly more contributions in conceptualization 
(64.99% of men versus 68.36% of women; P = 0.0937; two-sided t-test; 
test value = −1.6767; effect size = −0.0337), data curation (37.42% of men 
vs. 44.38% of women; p = 0.0008; two-sided t-test; test value = −3.3467; 
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Fig. 3 | Women are much less likely to be named on high-impact articles. The 
probability that an individual in a team is an author on an article (left) or 
inventor on a patent (right) in relation to the number of citations that the 
document receives. Estimates were obtained from an ordinary least squares 
regression of the probability of being named with an indicator for gender 
against the log of total forward citations plus one (Extended Data Table 7). Left, 
the regression is estimated based on 17,929,271 potential article authorships. 
Right, the regression is estimated based on 3,203,831 potential patent 
inventorships. The observations are weighted by the inverse of the number of 

teams per employee times the inverse of the number of potential articles or 
patents per employee. Estimates include controls for publication date 
(calendar year × month), PI status, number of days worked on the team, job title 
and research team fixed effects. Each data point represents the estimated 
difference in the probability of a woman being named an author (left) or 
inventor (right) at each citation level. Error bars extend from the point estimate 
of the estimated marginal effect by ±1.96 × the standard error and show the 95% 
confidence interval of the marginal effect. Standard errors are clustered by 
team and employee.
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effect size of −.0697), writing the original draft (45.73% of men versus 
52.48% of women; p = 0.0015; two-sided t-test; test value = −3.1813; 
effect size = −0.0675) and reviewing and editing (82.57% of men versus 
86.18% of women; p = 0.0205; two-sided t-test; test value = −2.3178; 
effect size = −0.0361). The only category in which men reported 
a greater contribution was software (18.31% of men versus 11.67% 
of women; p = 0.0000; two-sided t-test; test value = 4.3174; effect 
size = 0.0664). There is no significant difference between men and 
women in either formal analysis (49.23% of men versus 51.94% of women; 
P = 0.2028; two-sided t-test; test value = −1.2740; effect size = −0.0271) 
or project administration (32.82% of men versus 35.75% of women; 
P = 0.1471; two-sided t-test; test value = −1.4504; effect size = −0.0292).

Attribution and qualitative data
The third source of information was from the voices of scientists them-
selves. First, the survey permitted open-ended, written responses: 
887 such responses were received. Three-hundred and thirty-eight 
respondents volunteered to be interviewed: 6 (4 women and 2 men) 
were selected for additional feedback. A number of cross-cutting 
themes emerged, in addition to expected differences across fields, 
research teams, countries and seniority.

The first was the importance of team structure and the role of voice: 
researchers felt that they had to advocate for themselves to be included, 
and if they are unaware or too unsure of themselves to speak up, they 
will miss out. As one woman respondent said, “I did not push to be 
listed as an author”. Another woman respondent noted that “Being a 
woman [means] that quite often you contribute in one way or another 

to science but unless you shout or make a strong point, our contribu-
tions are often underestimated.” Multiple respondents mentioned that 
a lack of voice could disproportionately affect women, minorities and 
foreign-born scientists. However, respondents also noted that speaking 
up could also backfire: “Senior authors shamed me in front of group for 
asking for recognition (trying not to be a female-doormat stereotype 
backfires pretty much every time I have tried...)”.

The second was a lack of clarity with respect to authorship rules, 
which reinforces organizational structure. Rules are often determined 
by senior researchers (who are disproportionately men), and are often 
governed by personal relationships and idiosyncratic preferences, which 
reportedly led to disagreements. In at least two interviews, and in many 
of the survey responses, the disagreements were extremely bitter. The 
open-ended responses included such statements as “Favoritism, narcis-
sisms, power-play” (from a woman); “The team backstabbed me” (from 
a woman); “I […] found  this lack of credit from my PI to be childish and 
unprofessional” (from a man). Power imbalances were also frequently 
mentioned: for example, “Publications were used as reward and pun-
ishment. The department heads were on everything…[everything] was 
dependent on their decision on authorship. It was difficult to get away 
from them as it was a way to keep people tied to them” (from a woman).

Finally, interviewees and survey respondents were keenly aware 
of the importance of scientific output as a signal of scientific quality. 
They felt that being left off papers had important negative long-term 
consequences. Some felt that not getting credit had damaged their 
career: “My career would have been quite different with these two 
Nature papers” (from a woman); “Being left off papers for which I was 
one of the two main leads has greatly damaged my career as a researcher 
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Fig. 4 | Women are more likely to report that their contributions were 
underestimated or that there was discrimination. A survey was sent to 
28,000 scientists who had published in an academic journal listed in the Web of 
Science and who listed themselves with a public profile on the ORCID database. 
The bar chart shows the percentage of 871 men and women who provided 
answers to the survey question (Q2b): ‘What is the most likely reason that you 
were not listed as an author on that paper?’. Respondents were able to select 
more than one option, thus the total number of responses is higher than the 
number of respondents. The probability is computed as the arithmetic mean of 
the binary responses. Individual data on the reason an individual is not named 
are visualized in Supplementary Fig. 7. Error bars are centred on that mean and 

extend to the 95% confidence interval based on 1.96 × s.e.m. The difference in 
the probability of selecting ‘Contribution did not justify authorship’ between 
men and women is 0.1294 (P = 0.0000; two-sided t-test; test value = 4.1060). 
The difference in the probability of selecting ‘Others underestimated my 
contributions’ between men and women is −0.0984 (P = 0.0036; two-sided 
t-test; test value = −2.9218). The difference in the probability of selecting 
‘Discrimination/stereotyping/bias’ between men and women is −0.0780 
(P = 0.0003; two-sided t-test; test value = −3.6623). Additional t-tests of the 
differences in the probability of indicating a reason across men and women can 
be found in the text.
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and my chance to get promotion, jobs, and grant funding. I am still an 
academic but in a teaching role” (from a woman); “Authorship is pivotal 
for career advancement, yet when trainees are excluded from author-
ship due to senior author decisions, there is no appeal or challenge 
process… most of my fellow academics (especially women, and most 
especially women of colour) have been harmed by faculty members 
who decide to award authorship to other laboratory members who did 
not do the work” (from a woman). Others were still traumatized by the 
experience: “It was a very tough experience and I am relieved it didn't 
happen earlier in my career because that would have been devastating” 
(from a woman); “I'm still very angry over this disgusting behavior” 
(from a woman); “[it was] one of the lowest points of my professional 
career” (from a woman).

Discussion
The key finding of this work is that, regardless of the measure of sci-
entific credit, and despite efforts to standardize credit15, women are 
much less likely than men to be credited with authorship. The results are 
robust to a variety of alternative specifications and sample restrictions 
described in detail in Supplementary Information, part 1, namely (1) 
differential accuracy of gender imputation for non-English and Asian 
names; (2) differential match quality because of name changes and 
frequency; (3) the definition of potential authors, including first and last 
authorship; (4) differences by type of research output and the timing 
of research output relative to employment; (5) heterogeneity across 
more disaggregated fields; (6) sample construction; (7) definition of 
time working in laboratories; (8) logistic model; and (9) combinations 
of robustness checks.

Thus, some of the well-documented ‘productivity gap’1–5 may not be 
a gap in the contribution of women to science at all, but rather a gap in 

how much their contributions are recognized. The associated qualita-
tive work suggests that the standards determining scientific attribution 
are not well-known or understood by all parties and are frequently 
disregarded. The result appears to be that women are systematically 
disadvantaged. Although our focus here is on gender, these gaps were 
also reported in our survey for other marginalized groups.

The evidence presented here is consistent with the notion that gender 
differences in science may be self-reinforcing—that the fate experi-
enced by Rosalind Franklin and others like her discouraged numer-
ous potentially high-impact researchers from entering science23. The 
under-representation of women in faculty positions may be the result 
of early discouragement among junior researchers: women are less 
likely to be recognized for their contributions—especially on pivotal 
projects—and may consequently be less likely to advance in their 
careers. Longitudinal work on the progress of women’s careers24 could 
be furthered by studying these data, which could provide an empiri-
cal link between credit attribution, women’s career progression and 
discouragement of early-stage researchers.

There are also important caveats; each data source has its drawbacks. 
The administrative data are drawn from research-intensive universities; 
therefore, the research experiences described using the administrative 
data may not represent the research experiences for all teams and, to 
the extent that women may be under-represented in research-intensive 
universities, may not represent the experiences of all women. Similarly, 
although the survey data are drawn from a broader sample, they are 
drawn from a sample of authors, so they do not capture the experiences 
of those who have never been named as an author.

Much more can be done to unpack the findings in other dimensions, 
such as the mechanisms whereby credit for scientific work is allocated, 
other dimensions of identity, and richer (for example, non-binary and 
fluid) measures of gender. Although we made every effort to be aware 
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Fig. 5 | Women report making more contributions than men on authored 
papers. We sent a survey to 28,000 scientists who had published in academic 
journals listed in the Web of Science and who had a public profile in the ORCID 
database. Of these, 2,297 responded and completed the question (Q1a): ‘How 
did you contribute to the paper? Check all that apply.’ The graph shows the 
percentage of these respondents who selected each category. Probability was 
computed as the arithmetic mean of binary indicators representing whether 

the respondent selected each category. Each respondent was asked about a 
paper associated with them on Web of Science. Respondents were able to 
select more than one option, thus the total number of responses is therefore 
higher than the number of respondents. Individual data on the contribution by 
gender are visualized in Supplementary Fig.  8. Error bars are centred on the 
mean and extend to the 95% confidence interval based on 1.96 × s.e.m.
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of and to guard against confirmation bias25,26 by including a variety of 
robustness checks in the quantitative analysis, by working with survey 
methodologists to review the survey to ensure that the questions were 
not leading to a ‘desired’ answer27, and by developing an interview pro-
tocol that did not introduce any discussion of gender (Supplementary 
Information, part 3), we encourage other researchers to work with the 
code and data that are available at IRIS to extend our analyses. Indeed, 
the unique data infrastructure highlighted in this work can be, and is 
being, expanded16 by the addition of new universities and links to many 
different data sources. It can be used by many other researchers to allow 
more examination of the organization of science—ranging from rich 
and complex data on the dynamic longitudinal interactions on what 
is funded (grants), who is funded (PIs), and the characteristics of the 
individuals and research teams who are employed by those funds. It 
will also be possible in future work to examine the effect of policies 
instituted by the research institutions at which researchers work (at 
the department, campus and university level28) on the retention and 
productivity of scientists29, student placements and career trajecto-
ries30–32, as well as business startups33.

In sum, and beyond the results presented here, this paper serves as 
the introduction to a new and rich data infrastructure that is at least 
as rich as the bibliometrics data infrastructure that has served as the 
evidence basis for the study of the science of science34. The infrastruc-
ture, which is currently being used by more than 200 researchers can 
be, and has been, replicated in other countries35 and provides new 
insights into the organization of science.

Ethical approval
Institutional review board approval: University of Pennsylvania Insti-
tutional Review Board (IRB protocol no. 850522) approved the survey. 
University of Pennsylvania Institutional Review Board (IRB protocol no. 
850522), Boston University Institutional Review Board (IRB protocol 
no. 6412X) the New York University Institutional Review Board (IRB 
protocol no. IRB-FY2022-6243) and the Ohio State University Institu-
tional Review Board (IRB protocol 2022E0133) approved the follow-up 
interviews.

Construction of administrative data
The analytical linked dataset, which consists of observations on 128,859 
individuals employed on 9,778 research teams from 2013 to 2016 linked 
to 39,426 subsequent articles and 7,675 patents, is constructed from 
three sources: internal finance and human resources (FHR) admin-
istrative data from 20 universities and 57 colleges and campuses36, 
representing over 40% of total academic R&D spending in the United 
States, journal articles from the Web of Science and patent data derived 
from the universe of patents from the US Patent and Trademark Office.

Finance and human resources data
The first source is derived from FHR data, called UMETRICS, on all per-
sonnel paid on sponsored research projects for 118 college campuses 
from 36 universities from 2001 to 2022 (the exact years covered vary 
by institution)36. A full list of participating institutions, which are pri-
marily research-intensive, can be found at https://iris.isr.umich.edu/.

For each pay period, the FHR system at each university records the 
details of charges to each sponsored project, including for each per-
son paid on each grant and reports the information to the Institute 
for Research on Innovation and Science37. These administrative data 
are different from the level-of-effort data that are submitted by PIs as 
part of their annual and final report to an agency in at least three ways. 
First, they represent actual payroll data, drawn from the FHR system 
every pay period, rather than the estimate provided by the PI or the 
team administrator once a year. An intensive hand-curated effort that 
compared the results from an early effort found that the FHR reports 
are more granular and comprehensive than the PI or team administrator 

reports38,39. For example, all personnel names (including co-PIs) are 
recorded in the FHR reports, but many names are not recorded in the 
former. Second, the UMETRICS data capture all sources of funding, 
and are much more comprehensive than data from a single agency. The 
UMETRICS data include federal funding sources as well as funding from 
philanthropic foundations, state and local governments, industry, and 
international organizations. Third, the data reflect actual expenditures 
in every accounting time period, not just funds that are obligated at the 
beginning of a grant. So if, as often happens, there is a no-cost extension, 
or more funds are spent earlier in the project, that spending and the 
work of the relevant team members is captured in the data. There are 
limitations. If personnel do not charge time to the grant, their effort 
is not captured in the data; we are unaware of any source that would 
capture unpaid work. If there are gender differences in unpaid research 
work, the analysis would not be able to capture such differences.

The analysis focuses on a subset of 57 college campuses from 20 
universities, which consistently provided data for the period cover-
ing 2013–2016 (refer to pages 10, 11 and 23 of the UMETRICS summary 
documentation36; Supplementary information, part 2). This restric-
tion ensures that employment spells are long enough to reasonably 
identify PIs and teams as well as to observe the scientific documents 
produced by those teams from 2014–2016. The full data include 
administrative-level information from 392,125 unique federal and 
non-federal awards, including 23,307,254 wage payments to 643,463 
deidentified individuals28.

Research teams. The construction of research teams was informed by 
the work of Stephan30, who operationalized the concept of a research 
team to be a collection of scientists working jointly on projects with 
common funding and resources. The UMETRICS data are ideally suited 
to create measures of teams at scale using this definition, because the 
administrative data provide detailed information of all people charging 
time to each grant in each payroll period31,32.

The composition of each team is constructed as follows. The PI is at 
the centre of each team. The PIs in the data are identified by selecting 
faculty members who have been continuously paid on at least one 
research grant per year from 2013–2016 and whose associated wage 
payments always list faculty member as their job title. The PI-associated 
grants are identified if at least one wage payment was made to the PI 
during the sample period and shared evenly if they involve multiple 
PIs. Research centre grants, which are characterized as grants with 
12 or more faculty members—the 99th percentile of the grants—were 
excluded. Based on the grants associated with the PI, we identify the 
set of graduate students, postdocs, research staff, undergraduates 
and non-PI faculty members who are paid on those grants. The set of 
scientists paid on the grants associated with the PI collectively make 
up the research team. This procedure yields a total of 9,778 teams, with 
128,859 employees between 2013 and 2016.

The number of teams and potential authorships varies considerably 
across people in the sample. To ensure that our estimates are not 
dominated by people who are on many teams or on teams with many 
articles, we weight our data so that each person receives equal weight 
and for each person, each team receives equal weight. If NTeams i,  denotes 
the number of teams that person i is on and NPA t,  denotes the number 
of potential authorships (i.e., articles and/or patents) on team t, then 
the weight applied to person i’s potential authorships on team t is 

N N
1

⋅Teams i PA t, ,
. Thus, each person is weighted by the inverse of the number 

of teams on which he or she appears times the inverse number of poten-
tial authorships for that team. Each unique employee therefore has an 
overall weight of one in the sample. Our results, however, are robust 
to various alternative weightings.

Gender. Gender is algorithmically assigned using a combination of Eth-
nea32,40 and the Python Gender Guesser algorithms. Ethnea is first used 
to assign gender based on the first name and ethnicity (algorithmically 

https://iris.isr.umich.edu/
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assigned from the family name) of each employee. When the first name 
gives ambiguous results, the middle name is used. If gender is still ambig-
uous, Python’s Gender Guesser is applied to the individual’s first name, 
but not the middle name. Gender can be identified for 107,239 people 
(83.2% of sample), of whom 51,738 are women and 55,502 are men.

The accuracy of the imputation was tested against two sources of 
ground truth. The first source is self-reported, administrative data on 
gender for 12,867 faculty members from one institution participating in 
UMETRICS. The algorithm correctly predicts the self-reported gender in 
93% of the cases: the precision is 93.35% for men and 92.51% for women. 
The second source is derived from a match of the UMETRICS data with 
the Survey of Earned Doctorates41. The Survey of Earned Doctorates, an 
annual survey (with a 93% response rate) of all doctorate graduates from 
US universities, directly asks respondent to report their gender. The 
precision of the algorithm was 97.29% for men and 94.06% for women. 
Robustness checks are reported in the Supplementary Information. 
We note the limitation that our gender construct does not allow for 
non-binary or fluid gender identities. Addressing non-binary and/or 
fluid gender identities is an important direction for future research.

Job titles. Job titles for each employee, which are also referred to in the 
text as positions, or roles, are constructed from the FHR records42. Some 
employees may hold different job titles on the same or different teams; 
in those instances, the title is equally weighted based on the number 
of days they were paid in each title within each team.

Scientific fields. The scientific field of each team is identified by us-
ing the title of all associated grants and comparing the grants with a 
pool of text that describes each scientific field using a wiki-labelling 
approach17–19. This approach is used to assign a likelihood score that 
a given grant award title belongs to a given research field category, as 
categorized by the NCSES Survey of Graduate Students and Postdoctor-
ates in Science and Engineering. Each team’s field is estimated by taking 
the field of each grant and weighting the grant’s relative importance 
to the team’s portfolio by the direct expenditure of each grant over 
the analysis period.

Publications. Publications are drawn from the Web of Science database 
produced and maintained by Clarivate Analytics, which contains pub-
lication and citation information on approximately 69.3 million total 
articles from 1900 to 2018. The analysis focuses on articles published 
from 2014–2016 and linked to individuals observed in UMETRICS from 
2013–2016, although we include some additional robustness checks on 
other year ranges and other publication types in the Supplementary 
Information.

Patents. Patents are drawn from the PatentsView visualization and 
analysis platform, which contains 6.8 million total patents dating from 
1976 to 201843. The analysis focuses on a subset of patents that have 
application dates between 2014 and 2016 and are linked to individuals 
observed in UMETRICS from 2013–2016. Additional robustness checks 
on other year ranges are include in the Supplementary Information.

Linked administrative records. The links between UMETRICS and 
authorship on articles and patents were generated by combining infor-
mation on the individual and grants listed explicitly on the scientific 
documents as well as the implicit network structure of co-authorships 
and grant collaborations. In UMETRICS, the data include the individual’s 
name (including partial name in the case of hyphenated names), the 
institution and the grant number but, crucially, also other people on 
each grant. The same is the case in the publication and patent data. We 
identify all patents or articles associated with a given inventor or author 
by leveraging PatentsView’s algorithmically assigned inventor ID and 
the union of the Web of Science’s researcher ID and the ORCID when 
they are available. Key to our approach, these identity clusters enable 

us to link a given inventor or author’s full patent and publication history 
to an individual’s employee ID in UMETRICS such that we not only see 
those documents associated with a specific set of grants or a particular 
time period, but their entire patenting and publishing history over 
their career. The multi-step procedure, which uses data post 2000, is 
detailed in Ross et al.44. There are five steps. The first relies on an exact 
match of UMETRICS award numbers to either the award numbers cited 
in the government interest field in the patents or the award numbers 
cited in the acknowledgement section of the publication. The second 
step relies on name matches. It links inventors in Patentsview and au-
thors in Web of Science to people paid on UMETRICS grants using a 
sequential process of exact and fuzzy matching, with matched names 
removed from the pool for subsequent rounds. Candidate matches are 
disqualified for mismatches on institutional affiliation and dissimilarity 
of text between awards and publications and patents. The third step 
relies on network matches. It uses exact and fuzzy name matching to 
find co-inventors (in Patentsview), co-authors (in Web of Science) and 
collaborators (in UMETRICS). Candidate matches are disqualified for 
mismatches on institutional affiliation and dissimilarity of text between 
awards and publications and patents. The fourth step links people by 
blocked affiliations. Affiliation names are matched by blocking on the 
UMETRICS university affiliation to the affiliations in PatentsView and 
Web of Science (using a hand-curated, disambiguated list of university 
names), and using the stepwise matching and validation processes 
described in the second step. As before, candidate matches are dis-
qualified for mismatches on institutional affiliation and dissimilarity 
of text between awards and publications and patents. The fifth and final 
step relies on an approximate match of unmatched grants. It uses the 
pool of articles or patents associated with the identity clusters linked 
in steps 2–4 (namely, employees in UMETRICS linked with their as-
sociated inventor IDs and research ID or ORCID). The restriction that 
grant numbers on these documents are deterministically matched is 
loosened, and a fuzzy match is allowed between grants in UMETRICS 
and those unmatched in step 1 but associated with linked individuals.

Analytical sample. All publications and patents that acknowledge 
one of the team’s grants and/or has an author/inventor from the team 
are linked to the team. This results in a total of 47,101 scientific docu-
ments (39,426 articles and 7,675 patents) published between 2014–2016 
which were linked to employees and teams observed in UMETRICS at 
any point in the previous year, that is, from 2013–2016. Summary in-
formation about the individuals and the teams is provided in Extended 
Data Table 1. Additional information about the differences between 
authors and non-authors in the sample as well as some basic descriptive 
information surrounding grant funding sources is provided in part 2 
of the Supplementary Information.

The resulting linkages permit the calculation of the overall 
ever-author rate, which is 16.97% overall (12.15% for women and 21.17% 
for men) (Extended Data Table 2). The attribution rate is constructed 
by generating a pool of potential authorships as follows. All individuals 
with a faculty job title are considered eligible to be potential authors on 
all articles or patents produced by a team during the analysis period. 
All individuals with a non-faculty job title had to have been employed 
by the team in the year prior to the article of an article or application 
for a patent. We relax this time constraint for non-faculty job titles in 
the supplement, which generally increases the size of the gender gap 
reported in the main estimates.

The resulting analytical dataset consists of 21,133,102 potential 
authorship observations (17,929,271 on articles and 3,203,831 on 
patents) of which 367,231 were actual authorships. 43.8% of poten-
tial authorships were by women, whereas 31.8% of actual authorships 
were by women. If these numbers are converted to rates, the attribu-
tion rate on scientific documents was 3.17%. The attribution rate for 
articles alone is 3.2% while it is 1.3% for patents (Extended Data Table 2). 
Although both of these attribution rates are relatively low, this is largely 
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owing to the inclusion of undergraduate students and research staff in 
our sample as well as those observed working for short time periods. 
These employees are rarely observed in the actual authorships and 
result in a lower the overall attribution rate. The regression analyses 
reported in the subsequent sections control for both position and 
the number of days worked in the team; part 1 of the Supplementary 
Information provides results excluding undergraduates and research 
staff. The results are robust in each specification.

The third attribution measure—the impact of scientific articles and 
patents—is constructed by attaching forward citations (as of 2018) 
reported in the Web of Science and PatentsView datasets to the poten-
tial authorship sample. Because earlier documents in the sample (for 
example, those from 2014) have more time to receive citations than 
later documents (for example, those from 2016), we include publica-
tion date (calendar year × month) controls, as in our other models.

Effect sizes are calculated as the percentage point differences 
between the contrasted groups unless otherwise noted in the text.

Empirical strategy
The empirical approach was to estimate linear regressions using a 
model of the form

∣P

β β X M μ

[named …

= + woman + + + O + Team +
(1)

i t e l

i e i e i t i e i l i t e l

, , ,

0 1 , , , , , , , ,

where i potential authorship observations are characterized by an 
employee e working on team l in the year prior to a document with a 
publication or application date t (calendar year × months). The primary 
variable of interest, womani e, , is an indicator of whether a potential 
authorship was attributable to an employee who was a woman. Equa-
tion (1) is estimated on the sample of 17,929,271 potential authorships 
of journal articles, whereas the patent results are estimated on the 
sample of 3,203,831 potential inventorship.

A series of regressions was estimated. The first set (Extended Data 
Table 3) included controls, Xi e, , which sequentially include indicator 
variables for the publication or application month associated with a 
potential authorship or inventorship, the team’s PI, the number of 
days worked in the team, and an indicator of whether the individual’s 
gender was unknown. Idiosyncratic trends in the data are accounted 
for by including a series of Mi t,  calendar year × months and year fixed 
effects based on the date when article i was published or patent i 
applied for; an individual’s position in the team is accounted for 
through a series of Oi e,  position variables that capture the days that 
an individual worked in a particular position as a share of the total 
days worked on the research team. Differences across research teams 
are accounted by including a series of Teami l,  team fixed effects and 
we denote the disturbances in the data using μi t e l, , ,

. The second set 
(Extended Data Table 5) re-estimated equation (1) with the same con-
trols but by job title; the third set (Extended Data Table 6) re-estimated 
the same equation with the same controls by field. The final set 
(Extended Data Table 7) examined high-impact publications and  
patents.

Survey design and collection
The survey was sent to individuals who had previously published in 
academic research journals identified through their public profiles 
on ORCID, a platform in which academic researchers post their educa-
tional credentials, work history and publication records. Information 
on the survey instrument, e-mail recruitment, and interview protocols 
is available in part 3 of the Supplementary Information.

The main database was the ORCID 2017 database, which includes the 
publicly viewable information from profiles shown on the ORCID web-
site as they appeared in 2017: 897,264 profiles listed a complete name 
as well as educational credentials, work history information, or both.

E-mail addresses associated with the researchers of these profile 
were then derived from those e-mails listed on published and pub-
licly available research articles available from the Web of Science. Web 
of Science also provides the associated e-mail addresses for 128,602 
of the 897,264 ORCID profiles. Because the focus was on asking aca-
demic researchers about their experience with being named or not 
being named as co-authors on publications, the ORCID profiles were 
restricted to those that could be linked with a published academic 
paper in the Web of Science database between 2014 and 2018: 98,134 
profiles fulfilled those criteria.

Finally, some individuals create multiple ORCID profiles and some 
e-mail addresses are recycled for multiple people over time. To avoid 
e-mailing the same individual multiple times, each e-mail had only one 
associated ORCID profile. After resolving duplicates, there were 98,022 
unique ORCID profiles that matched our sample criteria.

Three studies were piloted before the main study. After imputing 
the gender of the individuals represented by the ORCID profiles using 
first names and the Ethnea database, 10,000 (imputed) ORCID profiles 
belonging to men and 10,000 (imputed) ORCID profiles belonging to 
women were randomly selected to receive the survey in addition to 
6,500 profiles that had gender ambiguous names.

Qualitative evidence
In addition to the open-ended text field in which researchers could 
record their experiences, the last question of the survey solicited 
researchers “to interview over Zoom regarding their experiences 
with the allocation of credit in research teams.” Respondents were 
told that if they were interested in talking about their experiences with 
the allocation of scientific credit on teams, they could enter their e-mail 
addresses to be contacted for a follow-up interview. A team of two 
authors (of both genders for three interviews, and of one gender for 
three interviews) of this paper interviewed six individuals for 30 min 
each. Four were women and two were men. Gender was never raised as 
an issue by the team but was raised by the interviewees. The detailed 
interview protocol is available in Supplementary Information, part 3.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-022-04966-w.
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Methods

The Methods are divided into four parts. The first describes the data 
construction and variable operationalization used in the analysis of 
administrative data; the second describes the analysis of the admin-
istration data; the third describes the construction of the survey data; 
and the fourth describes the qualitative responses and interviews.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated during and/or analysed during the current study 
are available at the Virtual Data Enclave repository at the Institute for 
Research on Innovation and Science at the University of Michigan. Access 
information is provided at https://iris.isr.umich.edu/research-data/
access/. Patent data were obtained from PatentsView (https://patents-
view.org/), which is publicly available. Web of Science data were obtained 
from CADRE at Indiana University (https://iuni.iu.edu/resources/data-
sets/cadre). The survey data are not available, per the University of Penn-
sylvania IRB protocols. Aggregate statistics from the survey data can be 
made available to researchers upon request, for replication purposes.

Code availability
All the Stata code (version 17) and Python code (version 3.7.6) used is avail-
able in the Virtual Data Enclave at the University of Michigan. Access infor-
mation is provided at https://iris.isr.umich.edu/research-data/access/. 
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Extended Data Table 1 | Team and Individual descriptive 
statistics

The table reports arithmetic means of the teams and the individuals who worked at least one 
day in any of the four years from 2013-16. Fields do not sum to 1 because fields are unassigned 
for about 11.5% of teams. Some employees hold different job titles over the timeframe; in 
those instances, they are first divided equally across titles within each team and then equally 
across teams. Shares of men and women do not sum to one because the gender of about  
17% of the employees could not be algorithmically assigned.
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Extended Data Table 2 | Attribution Rates by Job Title and Field

With the exception of two rows, “Total Count of Authors/Authorship” and “Total in Workforce”, the first three columns (a) summarize the share of “ever authors on a paper or ever inventors on a 
patent”. The numerator is individuals in each category who are ever named as an author on a publication or a patent. The denominator is the total number of individuals in that category. None 
of the totals includes individuals whose gender could not be imputed. The second three columns (b) summarize the share of authorships: The denominator – the set of “potential authorships” – 
was created by associating all members of each team who were employed one year prior to the publication/application date of all associated articles/patents emanating from that team during 
the analysis period. Since some individuals, such as research staff, are on multiple teams, they are proportionately allocated across teams and papers using a set of analytical weights (see 
Methods Analytical Sample section for details). The numerator - attribution - was defined as “actual authorships” on those publications and patents (see Methods: Analytical Sample for details). 
The “Total Count of Authors/Authorship” row summarizes the total counts of “ever authors” in the first three columns (a) and the weighted total counts of actual authorships in the second three 
columns (b). The “Total in Workforce” row summarizes the total counts of individuals in our sample. Note that the “Total” column excludes those in our sample who we could not identify as 
either men or women.



Extended Data Table 3 | Gender Difference in Attribution Rate by Job Title and Field

The table summarizes the share of actual and potential authorships that are women. The first column shows the percentage of actual authorships who are women. The second column shows 
the share of potential authorships who are women. The third column provides the effect size, defined as the difference in percentage points between the share of actual authorships and the 
share of potential authorships who are women. The fourth column displays the estimated standard error for those differences based on the bootstrapping procedure described in the Methods: 
Analytical Sample section. The last column provides the two-sided t-test statistic for the effect size being equal to zero using the bootstrap estimated standard error. To generate standard 
errors, we drew samples of people with replacement and calculated the difference in the share of women among actual and potential authors.
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Extended Data Table 4 | Gender differences in attribution

The sample consists of 17,929,271 potential article authorships and 3,203,831 potential patent inventorships. The top panel is estimated on the sample of potential article authorships and the 
bottom panel is estimated on the sample of potential patent inventorships. The dependent means are 3.18% and 1.31%, respectively. Specification (1) includes none of the control variables 
discussed above and estimates the gender gap to be 1.97 and 1.50 percentage points for articles and patents. Specifications (2-5) gradually introduce controls for days worked, PI status, 
publication month, job title, field, and team (which subsumes field). The observations are weighted by the inverse number of teams per employee times the inverse number of potential articles 
or patents per employee. Each coefficient is tested against the null hypothesis of being equal to 0 using a two-sided t-test. We do not adjust for multiple hypothesis testing. Standard errors are 
clustered by team and employee and are in parentheses. Statistical significance indicated by * p < 0.10, ** p < 0.05, *** p < 0.01.



Extended Data Table 5 | Gender differences in attribution by 
job title

Estimates based on a sample of 17,929,271 potential article authorships and 3,203,831 potential 
patent inventorships. The observations are weighted by the inverse number of teams per 
employee times the inverse number of potential articles or patents per employee. All estimates 
include controls for article/patent date (calendar year x month), PI status, days worked on the 
team, job title, and team fixed effects. Each coefficient is tested against the null hypothesis 
of being equal to 0 using a two-sided t-test. We do not adjust for multiple hypothesis testing. 
Standard errors are clustered by team and employee and are in parentheses. Statistical 
significance indicated by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Extended Data Table 6 | Gender differences in attribution by 
field

Estimates based on a sample of 17,929,271 potential article authorships and 3,203,831  
potential patent inventorships. The observations are weighted by the inverse number of 
teams per employee times the inverse number of potential articles or patents per employee. 
All estimates include controls for article/patent date (calendar year x month), PI status, days 
worked in the team, job title, and team fixed effects. Each coefficient is tested against the  
null hypothesis of being equal to 0 using a two-sided t-test. We do not adjust for multiple 
hypothesis testing. Standard errors are clustered by team and employee and are in parentheses. 
Statistical significance indicated by * p < 0.10, ** p < 0.05, *** p < 0.01.



Extended Data Table 7 | Gender differences in high impact 
attribution

Estimates based on a sample of 17,929,271 potential article authorships and 3,203,831  
potential patent inventorships. The observations are weighted by the inverse number of 
teams per employee times the inverse number of potential articles or patents per employee. 
All estimates include controls for article/patent date (calendar year x month), PI status, days 
worked in the team, job title, and team fixed effects. Each coefficient is tested against the  
null hypothesis of being equal to 0 using a two-sided t-test. We do not adjust for multiple 
hypothesis testing. Standard errors are clustered by team and employee and are in parentheses. 
Statistical significance indicated by * p < 0.10, ** p < 0.05, *** p < 0.01.
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Extended Data Table 8 | Survey Response Rates

This table describes the details of the three pilots and main study. The first column details the date of the first e-mail, while the second column details the date of the reminder e-mail, typically 
two weeks after the first e-mail. The main study had two reminder e-mails because on March 1st, an error in the Qualtrics survey system caused an abnormally high number of e-mails to bounce 
(~11,000). On March 9th, after the error had been addressed, we re-sent reminder e-mails to those respondents that had been missed due to the error. Column three describes the sampling 
strategy; random sampling was used for the pilots, but once we learned that there were far fewer women in the population than there were men, we adjusted to a gender-stratified sampling 
strategy in order to gain enough power for two-sided t-tests comparing responses from men and women. Specifically, 10,000 (imputed) ORCID profiles belonging to men and 10,000 (imputed) 
ORCID profiles belonging to women were randomly selected to receive the survey in addition to 6,500 profiles that had gender ambiguous names. Column 4 indicates the number of e-mails 
sent, while columns 5-7 document the response rate. A large fraction of emails either bounced or received an automated response.



Extended Data Table 9 | Characteristics of survey 
respondents

The table reports arithmetic means of the demographic characteristics of survey respondents.
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